Functional-Coefficient Autoregressive Models
نویسندگان
چکیده
منابع مشابه
Gaussian Processes for Functional-Coefficient Autoregressive Models
This work is concerned with nonlinear time series models and, in particular, with nonparametric models for the dynamics of the mean of the time series. We build on the functional-coefficient autoregressive (FAR) model of Chen and Tsay (1993) which is a generalization of the autoregressive (AR) model where the coefficients are varying and are given by functions of the lagged values of the series...
متن کاملFunctional coefficient autoregressive models for vector time series
We extend the functional coefficient autoregressive (FCAR) model to the multivariate nonlinear time series framework. We show how to estimate parameters of the model using kernel regression techniques, discuss properties of the estimators, and provide a bootstrap test for determining the presence of nonlinearity in a vector time series. The power of the test is examined through extensive simula...
متن کاملFunctional Coefficient Autoregressive Models: Estimation and Tests of Hypotheses
In this paper, we study nonparametric estimation and hypothesis testing procedures for the functional coef®cient AR (FAR) models of the form Xt f1(X tÿd)X tÿ1 f p(X tÿd)X tÿ p å t, ®rst proposed by Chen and Tsay (1993). As a direct generalization of the linear AR model, the FAR model is a rich class of models that includes many useful parametric nonlinear time series models such as the ...
متن کاملBayesian Analysis of Random Coefficient AutoRegressive Models
Random Coefficient AutoRegressive (RCAR) models are obtained by introducing random coefficients to an AR or more generally ARMA model. These models have second order properties similar to that of ARCH and GARCH models. In this article, a Bayesian approach to estimate the first order RCAR models is considered. A couple of Bayesian testing criteria for the unit-root hypothesis are proposed: one i...
متن کاملEstimation in nonstationary random coefficient autoregressive models
We investigate the estimation of parameters in the random coefficient autoregressive model Xk = (φ+ bk)Xk−1 + ek, where (φ,ω 2, σ2) is the parameter of the process, Eb0 = ω2, Ee0 = σ 2. We consider a nonstationary RCA process satisfying E log |φ + b0| ≥ 0 and show that σ2 cannot be estimated by the quasi-maximum likelihood method. The asymptotic normality of the quasi-maximum likelihood estimat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Statistical Association
سال: 1993
ISSN: 0162-1459,1537-274X
DOI: 10.1080/01621459.1993.10594322